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Abstract 

In this paper, a new enhanced version of the Particle Swarm Optimization (PSO) is presented. An important modification is 
made by adding probabilistic functions into PSO, and it is named Probabilistic Particle Swarm Optimization (PPSO). Since 
the variation of the velocity of particles in PSO constitutes its search engine, it should provide two phases of optimization 
process which are: exploration and exploitation. However, this aim is unachievable due to the lack of balanced particles’ 
velocity formula in the PSO. The main feature presented in the study is the introduction of a probabilistic scheme for updating 
the velocity of each particle. The Probabilistic Particle Swarm Optimization (PPSO) formulation thus developed allows us to 
find the best sequence of the exploration and exploitation phases entailed by the optimization search process. The validity of 
the present approach is demonstrated by solving three classical sizing optimization problems of spatial truss structures. 

Keywords: Particle swarm optimization, Probabilistic particle swarm optimization, Spatial truss structures. 

1. Introduction 

The aim of the optimization of an engineering project 
in the design stage, known as optimal design, has become 
an important issue and it has been under the focus of 
researchers. In 1960s, the meta-heuristic optimization 
algorithms emerged and because of having fewer 
limitations compared to the mathematical programming 
approaches, these algorithms became popular among the 
researchers. Many meta-heuristic algorithms, were 
developed inspired by natural evolution such as 
Evolutionary Algorithm of Fogel et al. [1] Genetic 
algorithm by Holland [2], the laws of physics and 
mechanics such as Simulated annealing of Kirkpatrick et 
al. [3], and Charged System Search (CSS) of Kaveh and 
Talatahari [4] with example applications in [5,6], and 
natural interactions between animals and insects such as 
Ant Colony Optimization of Dorigo et al. [7] or Bees 
Algorithm of Pham et al. [8] 

Particle Swarm Optimization (PSO) is another meta-
heuristic algorithm which was inspired by social 
interactions among swarms and flocks of birds and was 
formulated by Eberhart and Kennedy [9] in order to be 
applied in engineering design optimization problems. 
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In this algorithm, each particle moves towards the best 
located particle and the best location ever of the particle 
itself. As the optimization search progresses, the velocity 
of each particle is updated and used for defining the new 
position of that particle in the search space. The new 
position is evaluated in terms of cost function: for 
example, in minimization problems, the particle with less 
cost function value is considered better located. 

From the aforementioned facts, one can conclude that 
the definition of the particles’ velocity is the search engine 
of this algorithm and it should provide two phases of the 
optimization process including exploration (global search), 
and exploitation (local search). In the exploration phase, 
the whole search space is swept and the region of the 
global minimum is found. Then the optimization process is 
progressed by correction of the position of the particles in 
the found region. This leads the particles to move towards 
the global minimum of the cost function with an 
approximation. 

However, the velocity updating scheme utilized in 
classical PSO has a steady form and hence does not 
distinguish the different contributions that exploration and 
exploitation give to the optimization process in the current 
iteration. To overcome this limitation, a new velocity 
updating scheme based on the probability of performing 
global or local search is proposed in the paper. 

Based on this approach, in the process of the iterations 
of the algorithm, PSO will perform global or local search 
with a predefined probability and thus, provides two 
phases of search for the algorithm. 

The best formulation of the new probabilistic PSO 
algorithm is obtained by comparing different variants. An 
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important modification is the randomly varying inertia 
weight that provides simultaneous global and local search 
capability thus enhancing the overall performance of the 
algorithm. 

Results obtained in three classical weight minimization 
problems of truss structures demonstrate the validity of the 
proposed approach. 

2. Particle Swarm Optimization 

PSO utilizes velocity vectors to update the current 
position of each particle in the swarm. The position of 
each particle in the swarm which adapts to its environment 
by flying in the direction of the best position of the entire 
particles and the best position of particle itself constitute 
the search of the PSO. The position of ith particle at 
iteration k+1 can be calculated using the following 
relationship: 
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Where, i

kx 1  is the new position; i
kx  is the position at 

iteration k; i
kv 1  is the updated velocity vector of the ith 

particle; and t  is the time step which is considered as 
unity. The velocity vector of each particle is determined 
by: 
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Where, w  is the inertia weight, which plays an 

important role in the PSO and distinguishes global and 
local search for the algorithm; ௞ܸ

௜  is the velocity vector at 
iteration k; 1r  and 2r  are two random numbers between 0 

and 1; i
kp  represents the best ever position of the particle 

i, local best; k
gp  is the global best position in the swarm 

up to iteration k; 1c  is the cognitive parameter; and 2c  is 

the social parameter. 
With the above description of PSO, the algorithm can 

be summarized as follows: 
Initial position, ix0 , and velocities, iv0 , of the particles 

are distributed randomly in a feasible search space. 
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Where, r  is a random number uniformly distributed 

between 0 and 1; minx  and maxx are minimum and 

maximum possible variables for the ith particle, 
respectively. 

From the previous discussion, it appears that particles' 
velocity provides the basis of the PSO search engine 

because it allows to update the position of each particle 
(and, hence, the design variables) throughout the 
optimization process. The definition of velocity should 
take care of two major phases entailed by optimization: (i) 
exploration or global search; (ii) exploitation or local 
search. In the exploration phase, particles should fly across 
the whole search space to find a limited region containing 
the global minimum. Velocity of particles should be large 
enough to allow particles to sweep the entire search space. 
After the region containing the global minimum has been 
found, the exploitation phase should begin. The position of 
each particle is corrected by taking small movements in 
the neighbourhood of the global minimum. By adopting 
the correct sequence of these two stages, it is possible to 
lead particles towards the global minimum. 

The PSO velocity formula actually includes two 
contributions. The first part is i

kvw. , deals with the 

exploration capability: if PSO is performing a global 
search, the value of w  should be large. The second part is 
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capability: the value of w  should be small so to make 
local search predominate over global search. 

However, the classical velocity updating scheme (2) 
implemented in classical PSO does not allow to 
dynamically alternate exploration and exploitation based 
on the current trend of the optimization process. This 
limitation will be solved in the present study. 

3. Probabilistic Particle Swarm Optimization 

This section presents a new variant of the PSO 
algorithm including probabilistic global and local search 
mechanisms. For that purpose, some probabilistic 
functions are added into the standard PSO formulation. 
These probabilistic functions are applied to the different 
parts of the velocity formula in order to control the search 
operations performed in the optimization process. By 
doing this, three different searches can be performed: (i) 
global search; (ii) local search towards the global best; (iii) 
local search towards the combination of global and local 
bests. The new optimization algorithm developed in this 
research is termed Probabilistic Particle Swarm 
Optimization (PPSO). In PPSO, the velocities of particles 
are updated as follows: 
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Where  ,  , and   are probabilistic functions and are 

defined as: 
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Where p  is a random number in the interval  1,0 ; and 

1p  and 2p  are predefined levels of probabilities set by the 

user.   and   are parameters for selection of the type of 
search. 1  provides local search towards local best and 

1  provides local search towards global best. Thus the 
values of   and   were selected to be 0 or 1. On the other 
hand,   controls the amount of global search and it should 
be chosen from a range of real numbers rather of 0 or 1. 
Thus, in this formula, some feasible variants are 
considered for  to find the best one. 

First, the constant value of 1 is considered for  ; 
second, a linear varying value in the format of Eq. (7) is 
assigned to  : 
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Equation (7) was derived from the work of Shi and 

Eberhart [10]. The inertia weight is progressively reduced 
as we approach to the optimum design. Larger values of 
inertia weight selected in the optimization process provide 
the algorithm with exploration capability in the early 
iterations while local search associated to small values of 
inertia weight predominates in the final iterations. 

The third strategy is to define α  as a random number in 
the interval [0,1]. PPSO can simultaneously perform 
global and local searches. This approach is a step further 
the common belief that meta-heuristic algorithms should 
perform only global search in the initial iterations and only 
local search in the final iterations. However, if a particle is 
close to the global optimum already in the early stages of 
the optimization process, global search may force that 
particle to fly away from such a good position. 
Consequently, the optimization algorithm becomes less 
robust. By setting   as a random number, exploration 
and exploitation can simultaneously be performed in all 
iterations: global search will be performed for some 
particles while other particles will perform local search. 

If 0 and 1 , local search towards the global best 
is performed. If 1  , local search towards the 
combination of global and local bests is performed. By 
properly integrating the global and local search strategies 
mentioned above it is possible to improve the overall 
performance of the optimization algorithm.  The main 
steps of PSO and PPSO algorithms are briefly summarized 
in the following. 

The main steps of PSO and PPSO algorithms are 
briefly summarized in the following. 

3.1. Initialization of the optimization algorithm 

Equation (3) is utilized to randomly generate particles 
so to cover the entire design space. Initial velocities are 
computed with Eq. (4). 

3.2. Evaluate particles 

The cost function is computed for each particle and the 

global best is determined. Local bests also are determined 
for each particle. Global best and local bests are 
respectively stored in two databases.  

3.3. Update particles' positions 

The position of each particle is updated with Eq. (1) 
based on the velocity and previous position of the particle. 
Should any particle fall outside of feasible design space 
(i.e. if optimization constraints are violated), it must be 
returned back to its previous location. 

3.4. Update memory 

If Step 3.3 results in improving the position of a 
particle, databases defined in Step 3.2 can be updated. The 
new position of the particle replaces the old position. 

3.5. Update particles' velocities 

The velocity of each particle is updated with Eqs. (5-6) 
based on the previous velocity of the particle, the global 
best and the local best. Exploration/exploitation search 
mechanisms are selected based on the current trend of the 
optimization history. 

3.6. Stopping criterion 

The optimization search terminates when a predefined 
number of iterations is reached. 

4. Design Examples 

In order to evaluate the efficiency and robustness of the 
PPSO approach proposed in this research, five algorithmic 
variants were implemented and then compared in three 
classical weight minimization problems of spatial truss 
structures: a 25-bar truss, a 72-bar truss, and a 120-bar 
dome. For each test problem, ten independent optimization 
runs were performed to evaluate the performance of each 
algorithm on a statistical basis. The following 
nomenclature was utilized: (i) LPSO denotes the classical 
PSO formulation with linearly varying inertia weight; (ii) 
PPSO C-1 denotes the probabilistic PSO formulation with 
constant inertia weight; (iii) PPSO C-2 denotes the 
probabilistic PSO formulation with randomly varying 
inertia weight; (iv) LPPSO denotes the probabilistic PSO 
formulation with linearly varying inertia weight. 

For each problem 30 independent runs are performed 
to obtain some statistical data about each algorithm. 
Number of particles in all variants is 20 and value 1 
selected as 1c  and 2c . Also, after some try and error, 

values of 0.6 and 0.8 were found to be suitable for 1p and

2p , respectively. A penalty function approach used to 

deal with the constraints. In this paper, the following 
abbreviations are adopted: PSO with linear varying inertia 
weight as LPSO, Probabilistic PSO with constant inertia 
weight as PPSO C-1, Probabilistic PSO with random 
inertia weight as PPSO C-2, and Probabilistic PSO with 
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linear varying inertia weight as LPPSO. 
The number of analyses for PPSO is naturally higher 

than that of PSO because of additional searches required 
for better exploitation, and consequently avoiding the 
algorithm from being trapped in local optima (see Tables 
5, 9 and 11). 

Here the suitability of PPSO compared to PSO and 
some of its variants are shown, however, there may be 
other algorithms which produce slightly better results for 
some of the considered examples. In fact no sole algorithm 

is known which produces the best results for different 
optimization problems compared to the other ones. 

4.1. A 25-bar spatial truss structure 

The first example is a 25-bar spatial truss structure in 
the form of a transmission tower is considered as described 
by Schmit and Fleury [11], and shown in Fig. 1. 

 

 
Fig. 1 Schematic  of the 25-bar spatial truss structure 

 
 

 
The design variables are the cross sectional areas of the 

members, which are categorized into eight groups 
presented in Table 1.  

 
Table 1 Element grouping for the spatial 25-bar truss structure 

Group   Truss Members 

1   1 

2   2~5 

3   6~9 

4   10~11 

5   12~13 

6   14~17 

7   18~21 

8   22~25 

 
Loading of the structure is shown in Table 2. 

Constraints are imposed to cross sectional areas of the 
members between 0.1 in2 to 3.4 in2, and to the allowable 
stresses which are included in Table 3. The other 
considered constraint is the allowable displacement which 
is taken as 35.0  in for every direction. The modulus of 
elasticity and material density in this problem are 10,000 

ksi and 0.1 3in
lb , respectively. 

Table 2 Loading conditions acting on the spatial 25-bar truss 
structure 

Node Fx (lb) Fy (lb) Fz (lb) 

1 10,000 10,000 10,000 

2 0 10,000 10,000 

3 500 0 0 
6 600 0 0 

 
Table 3 Stress constraints for the spatial 25-bar truss problem 

Element 
Group 

Allowable 
compressive stress ksi 

(MPa) 

Allowable tensile 
stress ksi (MPa) 

1 35.092 (241.96) 40.0 (275.80) 

2 11.590 (79.913) 40.0 (275.80) 

3 17.305 (119.31) 40.0 (275.80) 

4 35.092 (241.96) 40.0 (275.80) 

5 35.092 (241.96) 40.0 (275.80) 

6 6.759 (46.603) 40.0 (275.80) 

7 6.959 (47.982) 40.0 (275.80) 

8 11.082 (76.410) 40.0 (275.80) 
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Table 4 shows some optimized designs quoted in 
literature. The optimization results obtained for the five 
PSO variants compared in this study are listed in Table 5. 
The global optimization capability of each PSO variant 
was evaluated by computing the standard deviation of 
structural weights found in the 30 optimization runs: 
robustness and reliability of the optimization algorithm 
obviously increase as the standard deviation decreases. It 
can be seen that introducing linear variation of the inertia 
weight parameter   and probabilistic selection of 
particles’ velocity updating scheme in the PSO 

formulation allowed designs to be significantly improved 
with respect to standard PSO. In particular, probabilistic 
PSO with randomly varying inertia weight and 
probabilistic PSO with linearly varying inertia weight 
converged practically to the same optimized weight 
corresponding to slightly better designs than LPSO and 
PPSO C-1. Since PPSO C-2 found the best design overall 
with the lowest standard deviation, it should be considered 
the most efficient optimization algorithm. 

 

 
Table 4 Optimized designs quoted in literature for the spatial 25-bar truss structure 

Element Group [in2] Wu and Chow [12] Zhu [13] Hasancebi et al. [14] Erbatur et. al [15] Perez and Behdinan [16] 
1 0.1 0.1 0.1 0.1 0.1 
2 0.5 1.9 0.3 1.2 1.0227 
3 3.4 2.6 3.4 3.2 3.4 
4 0.1 0.1 0.1 0.1 0.1 
5 1.5 0.1 2.1 1.1 0.1 
6 0.9 0.8 1.0 0.9 0.6399 
7 0.6 2.1 0.5 0.4 2.0424 
8 3.4 2.6 3.4 3.4 3.4 

Best Weight (lb) 486.29 562.93 484.85 493.8 485.33 
Average Weight (lb) N/A N/A N/A N/A N/A 
Heaviest Weight (lb) N/A N/A N/A N/A 534.84 

SD (lb) N/A N/A N/A N/A N/A 
 

Table 5 Optimized designs obtained for different PSO variants in the spatial 25-bar truss problem 
Element Group [in2] PSO LPSO PPSO C-1 PPSO C-2 LPPSO 

1 1.83 0.18 0.10 0. 10 0.10 

2 0.28 0.42 0.46 0.42 0.45 

3 3.03 3.40 3.40 3.40 3.40 

4 0.20 0.23 0.10 0. 10 0.10 

5 0.91 2.02 1.99 1.92 1.84 

6 1.45 0.97 0.98 0.96 0.95 

7 1.21 0.45 0.42 0.48 0.48 

8 3.19 3.40 3.40 3.40 3.40 

Best Weight (lb) 537.50 486.67 484.31 484.06 484.07 

Average Weight (lb) 565.68 487.37 484.57 484.07 484.14 

Heaviest Weight (lb) 603.03 488.22 484.82 484.08 484.39 

SD (lb) 18.18 0.52 0.17 0.01 0.10 

Number of Analyses 480 6420 2220 2880 2340 

 
Convergence curves are compared in Fig. 2. It can be 

seen that probabilistic PSO formulations are considerably 
faster than standard PSO with constant or linearly varying 
inertia weight. Convergence speed was practically the 
same for all probabilistic PSO variants. Convergence 
curves averaged over the ten optimization runs are 
compared in Fig. 3. Trends are similar to those shown in 
Fig. 2 but convergence data were smoothed out by 
averaging. LPSO is slower than probabilistic PSO because 
of the presence of a step in the first third of the 
optimization history. 

Fig. 3 shows the average results of 30 independent runs 
for this example. This is performed to compare the 
convergence rate of each algorithm. All these curves are 
similar to those of as Fig. 1 but smoother. For example, it 
is concluded that the LPSO has a pause in the middle and 
this problem causes the reduction of convergence rate of 
this algorithm. Also, the PSO has a major problem in local 
search; and convergence rate of the PPSO C-1, PPSO C-2, 
and LPPSO are nearly the same and higher than PSO and 
LPSO. 
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Fig. 2 Convergence curves obtained for different PSO variants in the spatial 25-bar truss problem 
 
 

 

Fig. 3 Spatial 25-bar truss problem: convergence curves of different PSO variants averaged over 30 optimization runs 
 
For most of the structural optimum design problems, 

the global minimum is located on or close to the boundary 
of a constraint. In other words, the constraints in the 
engineering problems determine the limits of the search 
space and often at least one constraint is active in the final 

optimum result [17]. In this problem, Fig. 4 is shown from 
the best result of the PPSO C-2. As seen, the active 
constraint is the nodal displacements which are shown for 
each Degree of Freedom (DOF) and, there are two DOFs 
the displacements of which are exactly on the constraint. 

 

 
Fig. 4 Displacement vs. Degrees of Freedom for the 25-bar truss using results of the PPSO C-2 
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4.2. A 72-bar spatial truss structure 

The second test case considered in this study was the 
72-bar truss shown in Fig. 4. The cross sectional areas of 
elements were included as sizing variables. Because of 
structural symmetry, elements were grouped in sixteen 
groups (see Table 6) therefore, this test case has sixteen 
design variables. 

The two independent loading conditions acting on the 

structure are listed in Table 7. Nodal displacements must 
be less than  0.25 in while element stresses must be less 

than  25000 psi and the material density is 0.1 3in
lb  the 

modulus of elasticity is 10,000 ksi. The minimum cross 
sectional area for this problem is 0.1 in2. 

Table 8 shows some optimized designs quoted in 
literature. The optimization results obtained for the five 
PSO variants compared in this study are listed in Table 9.  

 
Table 6 Element grouping for the spatial 72-bar truss structure 

Group Truss Members 

1 1,2,3,4 

2 5,6,7,8,9,10,11,12 

3 13,14,15,16 

4 17,18 

5 19,20,21,22 

6 23,24,25,26,27,28,29,30 

7 31,32,33,34 

8 35,36 

9 37,38,39,40 

10 41,42,43,44,45,46,47,48 

11 49,50,51,52 

12 53,54 

13 55,56,57,58 

14 59,60,61,62,63,64,65,66 

15 67,68,69,70 

16 71,72 

 
Table 7 Loading conditions acting on the spatial 72-bar truss structure 

 Case 2   Case 1   
PZ 

kips(kN) 
PY PX 

PZ 
kips(kN) 

PY 
kips(kN) 

PX 

kips(kN) 
Node 

-5.0 (22.25) 0.0 0.0 -5.0 (22.25) 5.0 (22.25) 5.0 (22.25) 1 
-5.0 (22.25) 0.0 0.0 0.0 0.0 0.0 2 
-5.0 (22.25) 0.0 0.0 0.0 0.0 0.0 3 
-5.0 (22.25) 0.0 0.0 0.0 0.0 0.0 4 

 
Table 7 Optimized designs available in literature for the spatial 72-bar truss structure 

Element Group [in2] 
Zhu & 

Rozvany 
[18] 

Venkayya 
[19] 

Erbatur   
et al. [11] 

Schmit & 
Farshi [20] 

Gellatly & 
Berke [21] 

1 0.157 0.161 0.155 0.159 0.149 
2 0.536 0.557 0.535 0.594 0.773 
3 0.410 0.377 0.480 0.341 0.453 
4 0.569 0.506 0.520 0.608 0.342 
5 0.507 0.611 0.460 0.264 0.552 
6 0.520 0.532 0.530 0.548 0.608 
7 0.100 0.100 0.120 0.100 0.100 
8 0.100 0.100 0.165 0.151 0.100 
9 1.280 1.246 1.155 1.107 1.024 
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10 0.515 0.524 0.585 0.579 0.542 
11 0.100 0.100 0.100 0.100 0.100 
12 0.100 0.100 0.100 0.100 0.100 
13 1.897 1.818 1.755 2.078 1.464 
14 0.516 0.524 0.505 0.503 0.521 
15 0.100 0.100 0.105 0.100 0.100 
16 0.100 0.100 0.155 0.100 0.100 

Best Weight (lb) 379.660 381.200 385.760 388.63 395.970 

 
 

Table 8 Optimized designs obtained for the different PSO variants in the spatial 72-bar truss problem 

Element Group [in2] PSO LPSO PPSO C-1 PPSO C-2 LPPSO 

1 0.543 0.159 0.155 0.157 0.158 

2 0.635 0.550 0.557 0.542 0.529 

3 0.877 0.381 0.388 0.398 0.405 

4 0.521 0.611 0.617 0.584 0.586 

5 0.738 0.562 0.492 0.497 0.475 

6 0.493 0.522 0.546 0.523 0.524 

7 0.166 0.102 0.103 0.100 0.100 

8 1.031 0.111 0.120 0.100 0.100 

9 1.245 1.268 1.213 1.281 1.301 

10 0.610 0.502 0.502 0.514 0.518 

11 0.812 0.111 0.109 0.100 0.100 

12 1.197 0.101 0.101 0.100 0.100 

13 1.446 1.902 1.898 1.869 1.843 

14 0.512 0.502 0.492 0.513 0.525 

15 0.287 0.101 0.101 0.100 0.104 

16 1.030 0.107 0.103 0.100 0.100 

Best Weight (lb) 567.895 381.111 380.788 379.395 379.755 

Average Weight (lb) 613.954 383.988 383.102 379.610 380.312 

Heaviest Weight (lb) 661.255 389.610 387.365 379.932 381.939 

SD (lb) 37.631 2.759 1.884 0.168 0.664 

Number of Analyses 1240 19680 8580 10460 11260 

 
 
PPSO C-2 again found the best weight with the lowest 

standard deviation. Convergence curves relative to the best 
designs and convergence curves averaged over the ten 
optimization runs carried out for each PSO variant are 
plotted in Fig. 6 and Fig. 7, respectively. 

It can be seen that global optimization capability and 
convergence speed improved significantly in the case of 
probabilistic PSO. Standard PSO got stuck in a local 
minimum while standard PSO with linearly decreasing 
inertia weight showed a large step in the first part of the 
optimization history. The convergence history of PPSO 
can clearly be divided in two phases: in the first part, 

structural weight decreases sharply because global search 
predominates; in the last part, structural weight decreases 
much more slightly because local search predominates. 
Compared to standard PSO, probabilistic search allows 
improving significantly both phases mentioned above. The 
optimized design was critical with respect to nodal 
displacements. 

Also, the active constraint of this problem is the 
displacements of the DOFs, which are shown in Fig. 8. 
From this figure, it is apparent that some displacements are 
on the border. 
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Fig. 5 Schematic of the spatial 72-bar truss structure 

 
 

 
Fig. 6 Convergence curves obtained for different PSO variants in the spatial 72-bar truss problem 

 

 
Fig. 7 Spatial 72-bar truss problem: convergence curves of different PSO variants averaged over 30 optimization runs 
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Fig. 8 Absolute displacement vs. Degrees of Freedom for the 72-bar truss using results of the PPSO C-2 
 

4.1. A 120-bar spatial dome truss structure 

Design of a 120-bar spatial dome truss, shown in Fig. 
9, is considered as the last example to compare the 
practical capability of the proposed modification. This 
dome is utilized in literature to find size optimum design. 
The modulus of elasticity is 30,450 ksi (210,000 MPa), 
and the material density is 0.288 lb/in3 (7971.810 kg/m3). 
The yield stress of steel is taken as 58.0 ksi (400 MPa). 
This dome is considered to be subjected to vertical loading 
at all the unsupported joints. These loads are taken as 
−13.49 kips (−60 kN) at node 1, −6.744 kips (−30 kN) at 

nodes 2 through 14, and −2.248 kips (−10 kN) at the 
remaining nodes. The minimum cross sectional area of all 
members is 0.775 in2 (2 cm2) and the maximum cross-
sectional area is taken as 20.0 in2 (129.03 cm2). The stress 
constraints of the structural members are calculated as per 
AISC (1989) specifications as illustrated in Eq. (8). The 
120 bar spatial truss members are categorized into 7 
groups as shown in Fig. 9. 

 

 

(8) 

 

 
Fig. 9 Schematic of the spatial 120-bar truss structure and element group numbering 
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Where, 
i  is the allowable tensile strength; yF  is the 

yield stress of steel; and 
i  is the compressive strength of 

the section and is calculated according to the slenderness 
ratio as follows: 

 

 

(9) 

 
Where, E is the modulus of elasticity; Fy is the yield 

strength of steel; Cc is the slenderness ratio which divides 
the elastic and inelastic buckling regions






  yc FEC 22 ; and i is the slenderness ratio. The 

displacement constraint for this example is 0.1969 in in 
every direction. 

Fig. 10 shows the convergence curves for the best 
design found for each PSO variant. It can be seen that all 
probabilistic search schemes were faster than standard 
PSO. The optimization results reported in literature are 
shown in Table 10 while Table 11 presents the 
optimization results obtained in the present study for the 
different PSO variants. Probabilistic PSO again 
outperformed standard PSO with constant parameters and 
linearly decreasing inertia weight. 

 
 

 
Fig. 10 Convergence curves obtained for different PSO variants in the spatial 120-bar dome problem 

 
 

Table 9 Optimized designs quoted in literature for the spatial 120-bar dome structure 

Element Group [in2] 
Lee and Geem [22] Kaveh and Talatahari [23] 

HS PSO PSOPC HPSACO 

1 3.295 3.147 3.235 3.311 

2 3.396 6.376 3.37 3.438 

3 3.874 5.957 4.116 4.147 

4 2.571 4.806 2.784 2.831 

5 1.15 0.775 0.777 0.775 

6 3.331 13.798 3.343 3.474 

7 2.784 2.452 2.454 2.551 

Best Weight (lb) 19707.77 32432.9 19618.7 19491.3 

Average Weight (lb) N/A N/A N/A N/A 

Heaviest Weight (lb) N/A N/A N/A N/A 

SD (lb) N/A N/A N/A N/A 
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Table 10 Optimized designs obtained for different PSO variants in the spatial 120-bar dome problem 
Element Group PSO LPSO PPSO C-1 PPSO C-2 LPPSO 

1 3.185 3.113 3.042 3.019 3.019 
2 3.724 3.881 4.059 3.894 4.049 
3 3.672 3.324 3.330 3.238 3.240 
4 2.273 2.243 2.245 2.236 2.236 
5 1.821 1.660 1.496 1.624 1.537 
6 3.733 2.530 2.515 2.482 2.487 
7 2.302 2.371 2.319 2.301 2.301 

Best Weight (lb) 19707.775 18589.917 18380.585 18248.994 18251.473 
Average Weight (lb) 21260.009 18832.655 18447.719 18281.442 18284.989 
Heaviest Weight (lb) 22364.558 19035.884 18551.380 18398.045 18329.027 

SD (lb) 807.740 165.849 51.946 27.554 47.000 
Number of Analyses 340 5980 4440 3480 4380 

 
The analysis of convergence curves averaged over the 

ten optimization runs performed for each PSO variant 
revealed that standard PSO could complete only global 
search but failed in the local search (see Fig. 11). LPSO 
shows a large step in the middle part of the convergence 
history. Conversely, probabilistic PSO variants always 

completed global search in about 100 iterations and were 
able to further reduce structural weight in the local search 
phase. Fig. 12 shows that all nodal displacements, as 
active constrants in this example, are in the allowable 
range.               

 

 
Fig. 11 Spatial 120-bar dome problem: convergence curves of different PSO variants averaged over 30 optimization runs 

 

 
Fig. 12 Displacement vs. Degrees of Freedom for the 120-bar spatial dome truss using the results of the PPSO C-2 
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5. Concluding Remarks 

A new probabilistic particle swarm optimization 
(PPSO) algorithm is developed in this research. The study 
is motivated by the fact that missing the best combination 
of the exploration and exploitation phases may 
significantly reduce the overall efficiency of optimization 
search. PSO with linearly varying inertia weight can take 
care in part of this issue but is not the best strategy as it 
forces the optimization search to be either global or local 
thus reducing the overall performance of the PSO 
algorithm. The concept of simultaneous global and local 
searches is introduced in this research by combining 
randomly variable inertia weight with probabilistic 
selection of the best global/local search mechanism. 

The validity of the new approach is tested using three 
classical weight minimization problems of spatial truss 
structures. Optimization results indicate that the 
probabilistic PSO is more efficient than the standard PSO. 
Further investigations should be carried out in order to 
tailor probabilistic search schemes to other metaheuristic 
algorithms. This would allow global optimization 
capability, convergence behavior and reliability of the 
optimization algorithm to be enhanced. 

Recently other enhanced versions of PSO are also 
developed for structural optimization, from which one may 
refer to those of Gholizadeh [24], and Kaveh and Zolghadr 
[25,26]. 
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